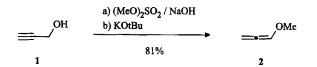
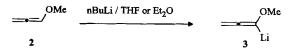
Das Reagenz · The Reagent

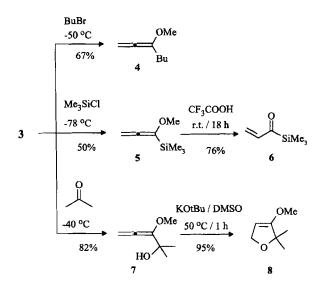

Methoxyallene: A Reagent of Versatile Applications in Organic Synthesis

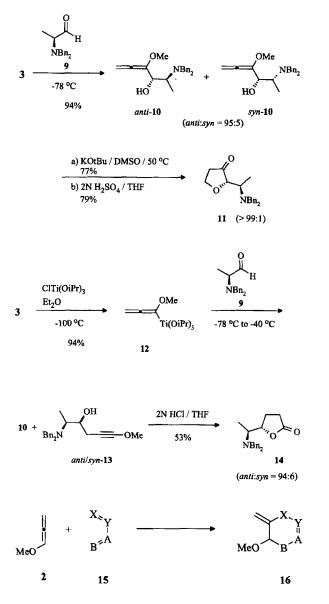
Reinhold Zimmer and Faiz A. Khan

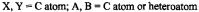

Dresden, Institut für Organische Chemie der Technischen Universität

Received September 28th, 1995

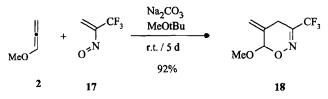
Since the first preparation of methoxyallene (2) by Hoff, Brandsma and Arens in 1968 [1], this compound with cumulated C=C bonds has emerged as a useful and convenient C3-building block for many transformations commonly performed in organic synthesis [2]. Methoxyallene (2) is easily accessible by a two-step reaction sequence starting from propargyl alcohol (1) [1, 3]. The compound is a colourless liquid (bp. 51-52 °C/760 Torr), and its chemical behaviour is similar to a "normal" enol ether (e.g. the sensitivity towards acidic hydrolysis). In the meantime, methoxyallene (2) is a commercially available reagent.


One of the key features of methoxyallene (2) is the smooth deprotonation of the hydrogen atom at C-1 leading to the 1-lithio-1-methoxyallene (3) [3, 4]. The broad utility of the lithiated intermediate 3 for synthesis is apparent from the wide ranging applications that are known in the literature [2]. The species 3 is reactive enough towards a variety of electrophiles, like alkyl halides, chlorotrimethylsilane or carbonyl compounds etc. [1, 5, 6]. A subsequent hydrolysis of methoxyallene derivatives can be easily performed under acidic conditions to produce an α,β -unsaturated carbonyl compound (5 \rightarrow 6) [5]. On the other hand, C-1-hydro-xyalkylated methoxyallene derivatives like 7 are cleanly cyclised to the corresponding 2,5-dihydro-3-methoxyfuran [7]. This methodology has been successfully applied to the

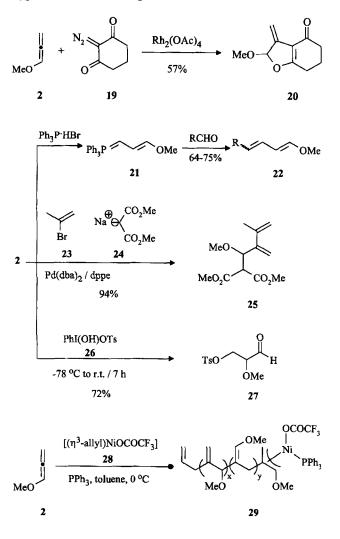

stereoselective synthesis of 3(2H)dihydrofurans, e.g. $3 \rightarrow 10 \rightarrow 11$ [8].


Starting from methoxyallene (2) the methoxyalkyne derivative 13 can be prepared by lithiation under standard conditions, transmetallation with TiCl(OiPr)₃ followed by addition of the in situ generated titanium species 12 to the α -aminoaldehyde 9 [9]. The observed regioselectivity is good (13:10 = 91:9), and the resulting *anti/syn*-selectivity of 13 is high (94% *anti*). The subsequent cyclisation of 13 under acidic reaction conditions yielded the γ -lactone 14 [9].

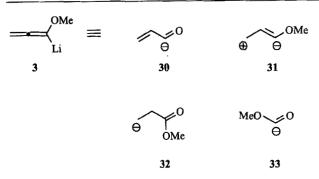
Furthermore, methoxyallene (2) can also serve as the dienophile component in inverse electron demand hetero-Diels-Alder reactions with different heterodienes 15 to give regioselectively the corresponding heterocycles 16 [10]. For example, using the in situ generated nitrosoalkene 17, the [4+2]-cycloaddition leads to the trifluoromethyl substituted 1,2-oxazine 18 in excellent yield [10c]. On the other hand,



employing the diazocyclohexane-1,3-dione (19) allows the dipolar cycloaddition of 2 to produce regioselectively the tetrahydrobenzofuran derivative 20 in 57% yield [11].



For example:



A number of other reactions involving methoxyallene (2) as reagent are well known [2]. 4-Substituted 1-methoxy-1,3dienes 22 (R = Ph, n-Hex, cyclohexyl) are synthesized as a geometric mixture from 2 by sequential treatment with triphenylphosphonium bromide followed by the reaction with an aldehyde [12]. Carbopalladation of 2 has been achieved with 2-bromo propene (23), dimethyl malonate 24 and catalytic amounts of a palladium catalyst [13]. Recently, it has been demonstrated that the allene 2 can be transformed into the 2-methoxy-3-tosyloxypropanal (27) by oxidation with the hypervalent iodine compound 26 [14].

Finally, methoxyallene (2) is also an attractive monomer to produce reactive polymers bearing exo-methylene moieties in the side chain [15]. For example, in the polymerisation of 2 at the feed ratio of [2/28] = 205, polymer 29 was obtained in 90% yield, and its number-average molecular weight (Mn) was established as 18 100.

In summary, the methoxyallene (2) has found wide applications in synthetic organic chemistry as a useful reagent leading to a number of interesting products such as dihydrofuran derivatives or α,β -unsaturated carbonyl compounds. Besides this, compound 2 serves also as a potent 2π -component in cycloaddition reactions to give synthetically interesting six-membered heterocycles. The lithiated methoxyallene intermediate 3 represents a useful equivalent for several synthons, e.g. 30 (α,β -unsaturated acyl anion equivalent), 31 (dipolar synthon), 32 (homoenolate equivalent), and 33 (formyl ester anion synthon) etc.

References

- S. Hoff, L. Brandsma, J. F. Arens, Recl. Trav. Chim. Pays-Bas 87 (1968) 916
- [2] a) R. Zimmer, Synthesis 1993, 165; b) H. F. Schuster, G. M. Coppola, Allenes in Organic Synthesis; Wiley, New York, 1984; c) R.W. Saalfrank, C.-J. Lurz in: Houben-Weyl, Methoden der Organischen Chemie, Bd. E 15/3, 4. Aufl., Thieme Verlag, Stuttgart, 1993, S. 2959
- [3] F. J. Weiberth, S. S. Hall, J. Org. Chem. 50 (1985) 5308
- [4] For investigations on the structure and reactivity of 3 see: C. Lambert, P. v. R. Schleyer, E.-U. Würthwein, J. Org. Chem. 58 (1993) 6377
- [5] J.-C. Clinet, G. Linstrumelle, Tetrahedron Lett. 21 (1980) 3987
- [6] S. Hoff, L. Brandsma, J. F. Arens, Recl. Trav. Chim. Pays-Bas 87 (1968) 1179

- [7] S. Hoff, L. Brandsma, J. F. Arens, Recl. Trav. Chim. Pays-Bas 88 (1969) 609
- [8] S. Hormuth, H.-U. Reissig, J. Org. Chem. 59 (1994) 67
- [9] S. Hormuth, H.-U. Reissig, D. Dorsch, Angew. Chem. 105 (1993) 1513; Angew. Chem., Int. Ed., Engl. 32 (1993) 1449
- [10] a) D. L. Boger, K. D. Robarge, J. Org. Chem. 53 (1988) 3373; b) D. L. Boger, T. T. Curran, J. Org. Chem. 55 (1990) 5439; c) R. Zimmer, H.-U. Reissig, Liebigs Ann. Chem. 1991, 553; d) D. Gröschl, H. P. Niedermann, H. Meier, Chem. Ber. 127 (1994) 955
- [11] M. C. Pirrung, J. Zhang, A. T. Morehead jr., Tetrahedron Lett. 35 (1994) 6229
- [12] S. F. Martin, P. J. Garrison, Tetrahedron Lett. 1977, 3875
- [13] N. Chaptal, V. Colovray-Gotteland, C. Grandjean, B. Cazes, J. Goré, Tetrahedron Lett. 32 (1991) 1795
- [14] R. M. Moriarty, T. E. Hopkins, R. K. Vaid, B. K. Vaid, S. G. Levy, Synthesis **1992**, 847
- [15] I. Tomita, Y. Kondo, K. Takagi, T. Endo, Macromolecules 27 (1994) 4413

Address for correspondence: Dr. R. Zimmer Technische Universität Dresden Institut für Organische Chemie Mommsenstr. 13 D-01062 Dresden, Germany